Abstract

Imatinib has been reported to induce heart failure and/or QTc prolongation. To better understand their underlying mechanisms, we assessed its effects on cardiohemodynamic, electrocardiographic and echocardiographic variables along with biomarkers of myocardial damage. Imatinib mesylate in doses of 1 and 10 mg/kg was intravenously administered to the halothane-anesthetized beagle dogs (n = 4). Effects of imatinib on each phase of isovolumetric contraction, ejection, isovolumetric relaxation and filling were studied, whereas its electrophysiological effects on early and late repolarization were analyzed by measuring J-Tpeak and Tpeak-Tend, respectively. The low and high doses of imatinib provided peak plasma concentrations of 3.23 and 17.39 μg/mL, reflecting clinically-relevant and supratherapeutic concentrations, respectively. Neither lethal ventricular tachyarrhythmia nor cardiohemodynamic collapse was observed. Imatinib decreased amplitude of peak −dP/dt, indicating suppression of isovolumetric relaxation, whereas no significant change was detected in the other phases. Imatinib prolonged QTc and J-Tpeakc without altering Tpeak-Tend, indicating increase of net inward current, which leads to intracellular Ca2+ overload. Thus, imatinib suppressed ventricular active relaxation and early repolarization, which may suggest the association of mitochondrial dysfunction-associated inhibition of ATP production. Since those findings were also reported for dasatinib, sunitinib and lapatinib, they could be common cardiac phenotype of tyrosine kinase inhibitors in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.