Abstract

An investigation was performed of the effectiveness of a time-resolved method for imaging very-low-contrast features embedded in highly scattering media. Experiments employed slabs of breastlike material into which were inserted small cylindrical objects having either a scattering or an absorption coefficient of 4, 2, 1.5, and 1.1 times greater than the surrounding medium. An attempt was made to quantify the degree of contrast produced by each object. The results indicate that time-gating is far more effective at enhancing the contrast of the scattering inhomogeneities than of the absorbing inhomogeneities. This observation is shown to agree with a diffusion-based model, which also predicts that time-gating can decrease the contrast of absorbing inhomogeneities unless very short time-gates can be employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.