Abstract
The type-III secretion system (T3SS) enables gram-negative bacteria to inject effector proteins into eukaryotic host cells. Upon entry, T3SS effectors work cooperatively to reprogram host cells, enabling bacterial survival. Progress in understanding when and where effectors localize within host cells has been hindered by a dearth of tools to study these proteins in the native cellular environment. We report a method to label and track T3SS effectors during infection using a split-GFP system. The breadth of this technique is demonstrated by labeling three effectors from Salmonella (PipB2, SteA, and SteC) and characterizing their localizations within host cells. PipB2 displays highly dynamic behavior on tubules emanating from the Salmonella containing vacuole labeled with both endo- and exocytic markers. SteA is preferentially enriched on tubules localizing with Golgi markers. This segregation suggests effector targeting and localization may play a functional role during infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.