Abstract

Flow battery electrodes are vital for performing redox reactions, and an in-depth understanding of reaction kinetics and spatial distribution differences in electrodes is very important for improving the efficiency of electrochemical reactions. In this study, a reflection-type phase-sensitive weak measurement imaging system was developed for the detection of flow batteries. The phase difference between two polarization components in total internal reflection caused by electrode redox processes was measured by weak value amplification. The resulting refractive index resolution of the imaging system was estimated to be 2.8-4.2 × 10-6 RIU. The real-time monitoring ability of the system was demonstrated by linear sweep voltammetry tests of vanadium redox batteries. Compared to traditional optical methods, the proposed weak measurement imaging sensor did not require coating, as it can be used in acid electrolytes of vanadium flow batteries. Meanwhile, the weak value amplification effect led to a higher resolution than the total internal reflection system shown in our previous work, thereby resulting in more accurate detection of electrochemical reactions. In sum, the proposed sensor looks very promising for the detection of electrochemical reactions in flow batteries, water splitting, electrochemical corrosion, and electrocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.