Abstract
Optical recording of neuronal activities using voltage-sensitive dyes (VSDs) is a useful method for simultaneous multi-site recording. However, it has been rather difficult to distinguish optical signals from individual, identified cells. We applied the optical recording technique using a high-speed charge coupled device (CCD) imaging system to a teleost thalamic nucleus, corpus glomerulosum (CG) which has a well-defined histological organization and large postsynaptic dendrites. Patch-like dye (di-4-ANEPPS) signals were observed in the dendritic layer of the CG in response to afferent nerve stimulations. These responses were completely blocked by an α-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA) receptor antagonist, did not propagate, and the size of the patches were close to that of a single dendritic tip of the ‘large cell’. Thus, we found that these patch-like VSD signals most likely represent postsynaptic potentials at individual dendritic tips of the large cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.