Abstract

The Gemini Planet Imager (GPI), currently under construction for the 8-m Gemini South telescope, is a high contrast adaptive optics instrument intended for direct imaging of extrasolar planets and circumstellar disks. GPI will study circumstellar disks using the polarization of disk-scattered starlight. These observations will be obtained using a novel 'integral field polarimetry' mode, in which the dispersing prism of GPI's integral field spectrograph is replaced by a Wollaston prism, providing simultaneous dual polarimetry for each position in the field of view. By splitting polarizations only after the instrument's lenslet array, this design minimizes wavefront differences between the polarization channels, providing optimal contrast for circumstellar dust. A rotating achromatic waveplate provides modulation. End-to-end numerical modeling indicates that GPI will be sensitive to scattered light from debris disks significantly fainter than can currently be imaged. We discuss the tradeoffs and design decisions for GPI polarimetry, describe the calibration and reduction procedures, and present the current status of the instrument. First light is planned for 2011.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.