Abstract
Scanning tunneling microscopy images of the (0001) plane of highly oriented pyrolytic graphite show defect regions consisting of an extensive network of partial dislocations that form extended and contracted nodes. The partial dislocations in hexagonal graphite enclose triangular regions (∼1000 nm on a side) of faulted material comprised of rhombohedral graphite. Electronic and elastic interactions of the tip with the HOPG surface are proposed to explain the observed image contrast between hexagonal and rhombohedral graphite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.