Abstract

AbstractStudies in ballistic-electron-emission spectroscopy (BEES) have enabled precise energy measurements of Schottky barrier heights with excellent spatial resolution and, more recently, it was shown that even scattering at the metal/semiconductor interface affects the BEES spectrum [1]. Monte Carlo simulations have been done to predict the spatial resolution of ballistic-electron-emission microscopy (BEEM) [2]. In this paper, we will discuss the experimental spatial resolution of BEEM, and we will also give some of our BEES results for Au/Si and for Au/PtSi/Si. Our experimental BEEM studies indicate that, for Au/Si, hot electron transport is diffusive rather than ballistic, because the inelastic mean free path length (∼100 nm) is much larger than the elastic mean free path length (∼10 nm). This is in agreement with existing theories and with the literature on the internal photoemission method of studying the transport. Even in this diffusive regime, the spatial resolution of BEEM is still expected to be very good, being on the order of 10 nm [2]. Our preliminary work on PtSi shows that it has an attenuation length of 4 nm, which differs significantly from that of Au.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.