Abstract
Cell tracking with magnetic resonance imaging (MRI) is mostly performed using superparamagnetic iron oxide (SPIO) nanoparticle-labeled cells. However, negative contrast in T2*-weighted imaging is inherently problematic as a homogeneous background signal is required to visualize the negative signal. In a magnetic field, SPIO-labeled cells develop their own magnetization, distorting the main field. We show here a method to visualize these distortions and use them to identify single cells with increased sensitivity and certainty compared to T2* images. We labeled HeLa cells with SPIOs, suspended labeled cells in agarose to make phantoms, and performed high-resolution gradient-echo MRI. Phase images were processed to enhance the visibility of single cells. To quantify SPIO content, we generated a map of frequency differences. MRI of cell phantoms showed that single cells could be detected at concentrations ranging from 200 to 10,000 cells mL(-1). Postprocessing of the magnetic resonance phase images reveals characteristic microfield distortions, increasing dramatically the sensitivity of cell recognition, compared to unprocessed T2* images. Calculating frequency shifts and comparing microfield distortions to simulations permit estimation of the nanoparticle load of single cells. We expect the ability to detect and quantify the iron load of single cells to prove useful in studies of cell trafficking, especially in rare cell populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.