Abstract

Polystyrene nanoparticles (PSNPs) with an average size of 85nm and loaded with an oxygen-quenchable luminescent ruthenium complex were used to sense and image oxygen inside cells following 2-photon excitation (2-PE). The ruthenium probe possesses a large two-photon absorption cross-section, and 2-PE is achieved by irradiation in the near infrared with commercially available fs-pulsed laser systems. The luminescence of the dye-loaded PSNPs is strongly quenched by oxygen, and Stern–Volmer plots are linear for both conventional single-photon excitation (1-PE) and for 2-PE. The particles do not show any significant cytotoxicity below a threshold concentration of 5μg/mL and are readily taken up by mammalian cells (MCF-7), presumably via membrane mediated pathways. Thus, the PSNPs promise to be well suited to image the oxygen distribution in living cells and tissues. The 2-PE is considered to be advantageous over conventional imaging techniques because it works in the near-infrared where background absorption and luminescence of biomatter is much weaker than at excitation wavelengths below 600nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.