Abstract

Detailed maps of the A-T distribution within human mitotic chromosomes labeled with BrdU are obtained with a high resolution scanning ion microprobe through the detection of bromine by imaging secondary ion mass spectrometry (SIMS). Corresponding maps of the emission loci of the molecular ion CN- describe the overall DNA, RNA and protein distribution in the chromosomes. Several chromosome preparations exhibit base-specific banding patterns (SIMS-bands) which mimic the well known G- or Q-bands resulting from conventional staining methods for optical microscopy. SIMS-bands are more noticeable in mitotic cells at the first cell cycle and after in situ denaturation or Giemsa staining. Sister chromatid exchanges (SCE) at the second cell cycle and beyond, occurring both spontaneously and promoted following cell culture exposure to the chemical aphidicolin (an inhibitor of DNA replication), can be visualized readily from the relative label signal intensities between sister chromatids. The comparison of base-specific label maps with CN- maps, in conjunction with the appearance of base-specific banding patterns, is informative about protein survival and/or removal following different chromosome preparation protocols. In addition, the resulting condensation state of the chromosomes can be appraised during SIMS analysis from the sample topography (imaged via the collection of mass-unresolved secondary ions). We demonstrate that imaging SIMS is a powerful complement to existing methods for the study of banding mechanisms and for the elucidation of chromosome structure. The advantages of this novel approach to the systematic and quantitative study of cytogenetic phenomena and methodologies are still largely untapped.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.