Abstract

We investigated methanol adsorption and dissociation on bridge-bonded oxygen vacancies of the TiO2(110)-(1x1) surface using in situ scanning tunneling microscopy. We provide the first direct evidence that methanol dissociates on oxygen vacancies via O-H bond scission rather than C-O scission. For CH3OH coverages lower than the oxygen vacancy concentration, stationary methoxy-hydroxyl pairs form. At CH3OH coverages close to the oxygen vacancy concentration undissociated mobile CH3OH interacts with methoxy-hydroxyl pairs and facilitates the movement of hydroxyl away from the methoxy group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.