Abstract

We propose a method for imaging a periodic moving/state-changed object based on computational ghost imaging with Hadamard speckle patterns and a slow bucket detector, named as PO-HCGI. In the scheme, speckle patterns are produced from a part of each row of a Hadamard matrix. Then, in each cycle, multiple speckle patterns are projected onto the periodic moving/state-changed object, and a bucket detector with a slow sampling rate records the total intensities reflected from the object as one measurement. With a series of measurements, the frames of the moving/state-changed object can be obtained directly by the second-order correlation function based on the Hadamard matrix and the corresponding bucket detector measurement results. The experimental and simulation results demonstrate the validity of the PO-HCGI. To the best of our knowledge, PO-HCGI is the first scheme that can image a fast periodic moving/state-changed object by computational ghost imaging with a slow bucket detector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.