Abstract
Image super-resolution focuses on achieving the high-resolution version of single or multiple low-resolution images. In this paper, a novel super-resolution approach based on morphological component analysis (MCA) and dictionary learning is proposed in this paper. The approach can recover each hierarchical structure well for the reconstructed image. It is integrated mainly by the dictionary learning step and high-resolution image reconstruction step. In the first step, the high-resolution and low-resolution dictionary pairs are trained based on MCA and sparse representation. In the second step, the high-resolution image is reconstructed by the fusion between the high-resolution cartoon part and texture part. The cartoon is acquired by MCA from the interpolated source image. The texture is recovered by the dictionary pairs. Experiments show that the desired super-resolution results can be achieved by the approach based on MCA and dictionary learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.