Abstract

Conventional image reconstruction methods for optoacoustic tomography (OAT) assume an idealized, non-dispersive acoustic medium. However, the linear attenuation coefficient and the phase velocity of acoustic waves propagating in soft tissue depend on temporal frequency and satisfy a known dispersion law. These frequency-dependent effects are incorporated into an optoacoustic wave equation, and a corresponding reconstruction method for OAT is developed. The improvement in image fidelity that can be achieved over conventional reconstruction methods is demonstrated by use of computer-simulation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.