Abstract

Parallel imaging techniques for MRI use differences in spatial sensitivity of multiple receiver coils to achieve additional encoding effect and significantly reduce data acquisition time. Recently, a projection onto convex sets (POCS) based method for reconstruction from sensitivity-encoded data (POCSENSE) has been proposed. The main advantage of the POCSENCE in comparison with other iterative reconstruction techniques is that it offers a straightforward and computationally efficient way to incorporate non-linear constraints into the reconstruction that can lead to improved image quality and/or reliable reconstruction for underdetermined problems. However, POCSENSE algorithm demonstrates slow convergence in cases of badly conditioned problems. In this work, we propose a novel method for image reconstruction from sensitivity encoded MRI data that overcomes the limitation of the original POCSENSE technique. In the proposed method, the convex combination of projections onto convex sets is used to obtain an updated estimate of the solution via relaxation. The new method converges very efficiently due to the use of an iteration-dependent relaxation parameter that may extend far beyond the theoretical limits of POCS. The developed method was validated with phantom and volunteer MRI data and was demonstrated to have a much higher convergence rate than that of the original POCSENSE technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.