Abstract

Quality of biometric samples has a significant impact on the accuracy of a biometric recognition system. Various quality factors, such as different lighting conditions, occlusion, and variations in pose and expression may affect an automated face recognition system. One of the most challenging issues in automated face recognition is intra-class variations introduced by the varied facial quality due to the variation in illumination conditions. In this paper, we proposed an adaptive discrete wavelet transform (DWT) based face recognition approach which will normalize the illumination distortion using quality-based normalization approaches. The DWT based approach is used to extract the low and high frequency sub-bands for representing the facial features. In the proposed method, a weighted fusion of the low and high frequency sub-bands is computed to improve the identification accuracy under varying lighting conditions. The selection of fusion parameters is made using fuzzy membership functions. The performance of the proposed method was validated on the Extended Yale Database B. Experimental result shows that the proposed method outperforms some well-known face recognition approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.