Abstract

This study presents a methodology for detecting delaminations in carbon fiber reinforced polymer (CFRP)-jacketed concrete structures by infrared thermography. Four specimens with artificial delaminations were evaluated through passive experiments under different weather conditions including winter, summer, sunny, and rainy conditions. The test parameters considered for the artificial delaminations in the specimens included size, depth, surface cover mortar, and the water content in the delamination void. The methodology detected delamination regions by boundary recognition based on the differences in surface temperature variations during a period. It could detect delaminations more efficiently and accurately than visual assessments based on thermal images. Furthermore, a few delaminations that were undetectable by thermal images were detected after image processing with the proposed methodology. In addition, the accuracy of the results was significantly affected by the time period for testing and the data-collection intervals. We discuss the recommended values obtained by parametric analysis and implement an application example using the proposed method and deep learning based on the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.