Abstract

针对传统图像去噪算法多噪声去除难,深层卷积神经网络去噪模型网络复杂、训练时间长等问题,提出一种基于自编码器结构的双分支改良编解码网络,实现高效图像去噪。双分支结构之一采用降-升采样实现点噪声消除,另一分支专注于宏观的图像修复和伪像去除,后端利用残差结构进行整合,实现数字图像混合噪声去噪。实验结果显示:对于含有标准差为15,均值为0的高斯噪声、噪声密度为5%的椒盐噪声和散粒噪声的混合噪声图像测试集,实验去噪效果相较于输入混合噪声图像峰值信噪比,平均提升了5.3%。与12层全卷积神经网络相比,去噪效果相当,训练速度提升了25.4%,体现了其“轻量级”的优点。实验表明:该方法相较于深层卷积神经网络,训练速度快,网络简单;相较于传统图像去噪算法,噪声去除效果也较为明显。该算法可应用于轻量级视觉平台后端去噪。

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.