Abstract

The author proposes an independent and novel approach to image coding, based on a fractal theory of iterated transformations. The main characteristics of this approach are that (i) it relies on the assumption that image redundancy can be efficiently exploited through self-transformability on a block-wise basis, and (ii) it approximates an original image by a fractal image. The author refers to the approach as fractal block coding. The coding-decoding system is based on the construction, for an original image to encode, of a specific image transformation-a fractal code-which, when iterated on any initial image, produces a sequence of images that converges to a fractal approximation of the original. It is shown how to design such a system for the coding of monochrome digital images at rates in the range of 0.5-1.0 b/pixel. The fractal block coder has performance comparable to state-of-the-art vector quantizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.