Abstract

A partially automatic method of digital processing images (photographs, shadow and Schlieren pictures) for the analysis of experimental data is proposed. The method is utilized to investigate the effect of the region of ionization instability created by a glow gas discharge on the front of an initially flat shock wave. The proposed method is based on a composition of simple image processing operations and makes it possible to perform simulations taking into account the real geometry of the ionization strata and the shape of the front of a shock wave based on the obtained experimental images. First, as a result of digital processing the geometry of experimental objects is extracted from the images. This information is then embedded in the Navier-Stokes code for conducting simulations. New results for the real geometry of ionization strata of different scales are presented which confirmed the previous ones obtained for the density homogeneously stratified source model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.