Abstract

Deep residual learning frameworks have achieved great success in image classification. This article presents the use of transfer learning which is applied on mango leaf image dataset for its disease’s detection. New methodology and training have been used to facilitate the easy and rapid implementation of the mango leaf disease detection system in practice. Proposed system can be used to identify the mango leaf for whether it is healthy or infected with the diseases like anthracnose or red rust. This paper describes all the steps which are considered during the experimentation and design. These steps include leaf image data collection, its preparation, data assessment by agricultural experts, and selection and tranning of deep neural network architectures. A deep residual framework, residual neural network (ResNET), was used to perform deep convolutional neural network training. ResNETs are easy to optimize and can achieve better accuracies. The experimental results obtained from “ResNET architectures, such as ResNet18, ResNet34, ResNet50, and ResNet101” show the accuracies from 94% to 98%. ResNET18 architecture selected from above for system design as it gives 98% accuracy for mango leaf disease’s detection. System will help farmers to identify leaf diseases in quick and efficient manner and facilitate decision-making in this front.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.