Abstract
Standard preconditioning techniques based on incomplete LU (ILU) factorizations offer a limited degree of parallelism, in general. A few of the alternatives advocated so far consist of either using some form of polynomial preconditioning or applying the usual ILU factorization to a matrix obtained from a multicolor ordering. In this paper we present an incomplete factorization technique based on independent set orderings and multicoloring. We note that in order to improve robustness, it is necessary to allow the preconditioner to have an arbitrarily high accuracy, as is done with ILUs based on threshold techniques. The ILUM factorization described in this paper is in this category. It can be viewed as a multifrontal version of a Gaussian elimination procedure with threshold dropping which has a high degree of potential parallelism. The, emphasis is on methods that deal specifically with general unstructured sparse matrices such as those arising from finite element methods on unstructured meshes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.