Abstract

Froth color can be referred to as a direct and instant indicator to the key flotation production index, for example, concentrate grade. However, it is intractable to measure the froth color robustly due to the adverse interference of time-varying and uncontrollable multisource illuminations in the flotation process monitoring. In this article, we proposed an illumination-invariant froth color measuring method by solving a structure-preserved image-to-image color translation task via an introduced Wasserstein distance-based structure-preserving CycleGAN, called WDSPCGAN. WDSPCGAN is comprised of two generative adversarial networks (GANs), which have their own discriminators but share two generators, using an improved U-net-like full convolution network to conduct the spatial structure-preserved color translation. By an adversarial game training of the two GANs, WDSPCGAN can map the color domain of froth images under any illumination to that of the referencing illumination, while maintaining the structure and texture invariance. The proposed method is validated on two public benchmark color constancy datasets and applied to an industrial bauxite flotation process. The experimental results show that WDSPCGAN can achieve illumination-invariant color features of froth images under various unknown lighting conditions while keeping their structures and textures unchanged. In addition, WDSPCGAN can be updated online to ensure its adaptability to any operational conditions. Hence, it has the potential for being popularized to the online monitoring of the flotation concentrate grade.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.