Abstract
Irritant contact dermatitis (ICD) is characterized by epidermal hyperplasia, infiltration of leucocytes into lesional skin and inflammatory cytokine release. The cellular infiltrate during ICD comprises primarily cells of the myeloid lineage. Our group has previously shown that the cytokine IL-6 confers a protective effect to lesional skin during ICD. How IL-6Rα function in myeloid cells is involved in the inflammatory response during ICD is, however, unknown. In the present study, utilizing a chemical model of ICD, it is shown that mice with a myeloid-specific knockout of the IL-6Rα (IL-6RαΔmyeloid ) display an exaggerated inflammatory response to benzalkonium chloride (BKC) and Jet propellant-8 (JP8) fuel, two well-characterized irritants relative to littermate control. Results from immunohistochemical and flow cytometric analyses revealed that IL-6RαΔmyeloid mouse skin displayed increased epidermal hyperplasia and inflammatory monocyte influx into lesional skin but lower numbers of resident macrophages relative to littermate controls after irritant exposure. Multiplex immunoassay revealed significantly higher levels of pro-inflammatory cytokines IL-1α and TNF-α, but reduced expression of chemokine proteins including CCL2-5, CCL7, CCL11, CXCL1 and CXCL10 in IL-6RαΔmyeloid mouse skin relative to littermate control following irritant exposure. These results highlight a previously unknown role of IL-6Rα function in myeloid cells in modulating the inflammatory response and myeloid population dynamics during ICD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.