Abstract

Multiple sclerosis (MS) is characterized by an increase in interleukin-22 and Fas, and a decrease in FOXP3, among other factors. In this study, we examined patients with MS and healthy control subjects and used the experimental autoimmune encephalomyelitis (EAE) animal model to identify the effects of IL-22 on oligodendrocytes and T cells in MS development. In MS, the expression of Fas in oligodendrocytes and IL-22 in CD4+CCR4+CCR6+CCR10+ T cells was enhanced. Ikaros and FOXP3 were both decreased in T cells. Depending on exogenous IL-22, Fas increased the phosphorylation of mitogen- and stress-activated protein kinase 1 and activated the nuclear factor-κB pathway in oligodendrocytes, leading to an increase in Fas and oligodendrocyte apoptosis. IL-22 decreased FOXP3 expression by activating NF-κB, and it further inhibited PTEN and Ikaros expression. Tregs reversed the functions of IL-22. Taken together, these findings help to elucidate the mechanisms of IL-22 in MS development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.