Abstract

Tumor necrosis factor (TNF) has very potent antitumor activity, but it also provokes a systemic inflammatory response syndrome that leads to shock, organ failure, and death. Here, we demonstrate that interleukin (IL)-17, a proinflammatory cytokine known to be produced mainly by activated T cells, has a critical role in this process. Antiserum against IL-17 or deletion of Il17r protected mice against a lethal TNF challenge. Serum levels of TNF-induced IL-6 and nitric oxide metabolites were significantly reduced in mice deficient in the IL-17R. TNF-induced leukocyte influx in the small intestine was reduced, and there was no injury to the small intestine. Surprisingly, electron microscopy showed that IL-17 was constitutively present in Paneth cells of the crypts. Upon TNF challenge, the intracellular pool of IL-17 in these cells was drastically reduced, suggesting rapid release of IL-17 from the granules of Paneth cells. Our findings assign a novel role for IL-17 in an acute inflammation and identify Paneth cells as a source of the IL-17 that plays a role in this process. These data indicate that innate immune cytokine responses in the local mucosa may participate in rapidly amplifying responses to systemic inflammatory challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.