Abstract

How can we expand an initial set of keywords with a target domain in mind? A possible application is to use the expanded set of words to search for specific information within the domain of interest. Here, we focus on online forums and specifically security forums. We propose IKEA, an iterative embedding-based approach to expand a set of keywords with a domain in mind. The novelty of our approach is three-fold: (a) we use two similarity expansions in the word-word and post-post spaces, (b) we use an iterative approach in each of these expansions, and (c) we provide a flexible ranking of the identified words to meet the user needs. We evaluate our method with data from three security forums that span five years of activity and the widely-used Fire benchmark. IKEA outperforms previous solutions by identifying more relevant keywords: it exhibits more than 0.82 MAP and 0.85 NDCG in a wide range of initial keyword sets. We see our approach as an essential building block in developing methods for harnessing the wealth of information available in online forums.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.