Abstract

AbstractMultijunction (MJ) solar cells achieve very high efficiencies by effectively utilizing the entire solar spectrum. Previously, we constructed a III‐V//Si MJ solar cell using the smart stack technology, a unique mechanical stacking technology with Pd nanoparticle array. In this study, we fabricated an InGaP/AlGaAs//Si three‐junction solar cell with an efficiency of 30.8% under AM 1.5G solar spectrum illumination. This efficiency is considerably higher than our previous result (25.1%). The superior performance was achieved by optimizing the structure of the upper GaAs‐based cell and employing a tunnel oxide passivated contact Si cell. Furthermore, we examined the low solar concentration performance of the device and obtained a maximum efficiency of 32.6% at 5.5 suns. This performance is sufficient for realistic low concentration photovoltaic applications (below 10 suns). In addition, we characterize the reliability of the InGaP/AlGaAs//Si three‐junction solar cell with a damp heat test (85 °C and 85% humidity for 1000 h). It was confirmed that our solar cells have high long‐term stability under severe conditions. The results demonstrate the potential of GaAs//Si MJ solar cells as next‐generation photovoltaic cells and the effectiveness of smart stack technology in fabricating multijunction cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.