Abstract

The low to intermediate temperature (850–1050 K) auto-ignition characteristics of furan, 2,3-dihydrofurn and tetrahydrofuran have been investigated both experimentally and kinetically. The pressure (18 and 33 bar) and equivalence ratio (0.5, 1.0 and 2.0) effects on the auto-ignition of furan were experimentally examined using a rapid compression machine. Compared with alkylated furans, the ignition delay times of furan show notably insensitivity to equivalence ratio. Comparison on the low to intermediate temperature reactivity of furan, alkylated furans, 2, 3-dihydrofuran, and tetrahydrofuran indicates that saturation degree plays a more dominant role in enhancing reactivity than alkyl substitution. Literature mechanisms were validated against present data. Kinetic analyses revealed the major fuel consuming routes and the causes for the deviation between simulation and experimental results. Furthermore, a modified model of furan, 2, 3-dihydrofuran, and tetrahydrofuran was proposed and validated against the ignition delay times in this study as well as experimental data in literatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.