Abstract

Despite the remarkable success of immune checkpoint blockade (ICB) therapy, most cancer patients still do not respond. We now find that immunotherapy can induce stem-like properties in tumors. Using mouse models of breast cancer, we observe that cancer stem cells (CSCs) show not only enhanced resistance to Tcell cytotoxicity, but that interferon gamma (IFNγ) produced by activated Tcells directly converts non-CSCs to CSCs. IFNγ enhances several CSC phenotypes, such as resistance to chemo- and radiotherapy and metastasis formation. We identified the branched-chain amino acid aminotransaminase 1 (BCAT1) as a downstream mediator of IFNγ-induced CSC plasticity. Targeting BCAT1 invivo improved cancer vaccination and ICB therapy by preventing IFNγ-induced metastasis formation. Breast cancer patients treated with ICB exhibited a similar increase in CSC markers expression indicating comparable responses to immune activation in humans. Collectively, we discover an unexpected, pro-tumoral role for IFNγ that may contribute to cancer immunotherapy failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.