Abstract
IFN gamma/LPS treatment increases macrophage tumoricidal and microbicidal activity and inhibits CSF-1-induced macrophage proliferation. The mechanism underlying the latter effect was investigated in the CSF-1-dependent mouse macrophage cell line, BAC-1.2F5. IFN-gamma and LPS together dramatically reduced the total number of CSF-1 receptors (CSF-1R) via selective degradation of the cell surface form. Processing and transport of intracellular CSF-1R to the cell surface were unaffected. IFN-gamma alone had no effect but significantly enhanced LPS-induced CSF-1R down-regulation. The reduction in CSF-1R number was protein kinase C-dependent and involved changes in serine phosphorylation of the receptor at different sites. CSF-1R down-modulation by this mechanism may be important in switching off the energy-consuming processes of CSF-1R-mediated proliferation and chemotaxis in activated macrophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.