Abstract
ABSTRACTThe demand for higher data rate has spurred the adoption of multiple‐input multiple‐output (MIMO) transmission techniques in IEEE 802.11 products. MIMO techniques provide an additional spatial dimension that can significantly increase the channel capacity. A number of multiuser MIMO system have been proposed, where the multiple antenna at the physical layer are employed for multiuser access, allowing multiple users to share the same bandwidth. As these MIMO physical layer technologies further evolve, the usable bandwidth per application increases; hence, the average service time per application decreases. However, in the IEEE 802.11 distributed coordination function‐based systems, a considerable amount of bandwidth is wasted during the medium access and coordination process. Therefore, as the usable bandwidth is enhanced using MIMO technology, the bandwidth wastage of medium access and coordination becomes a significant performance bottleneck. Hence, there is a fundamental need for bandwidth sharing schemes at the medium access control (MAC) layer where multiple connections can concurrently use the increased bandwidth provided by the physical layer MIMO technologies. In this paper, we propose the MIMO‐aware rate splitting (MRS) MAC protocol and examine its behavior under different scenarios. MRS is a distributed MAC protocol where nodes locally cooperate with one another to share bandwidth via splitting the spatial channels of MIMO systems. Simulation results of MRS protocol are obtained and compared with those of IEEE 802.11n protocol. We show that our proposed MRS scheme can significantly outperform the IEEE 802.11n in medium access delay and throughput. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.