Abstract

This work investigates a vapour injection scroll compressor integrated in a heat pump using the refrigerant R1234ze(E). The water-to-water heat pump was tested under a wide temperature range at the evaporator and condenser sides. The test results revealed that the performance is significantly reduced for lifts of over 30 K with the coefficient of performance being even below 2 and the maximum 2 nd law efficiency was just 28%. In order to enlighten the reasons behind such significant compressor underperformance, a semi-empirical model has been extended to include vapour injection, and a new improved modelling approach for the suction pressure drop was developed and implemented considering both the turbulent and laminar inlet flow regimes. Once the accuracy of the developed semi-empirical model was verified, the model was then adjusted to account for the R1234ze(E) operation, by fine-tuning its parameters based on the test data. The main loss mechanism identified is the high suction pressure drop, due to the high friction factor, with the inlet refrigerant flow possibly being laminar instead of turbulent. This resulted in a significant reduction of the mass flow rate and volumetric efficiency, while the standard model for suction pressure drop was not able to capture this effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.