Abstract

AbstractThe preparation of thin films is often associated with the appearance of unknown polymorphs, as both the substrate and deposition method can heavily influence crystallization processes. Here, chemical vapor deposition is used to obtain thin films of a copper‐isonicotinate (Cu‐INA) metal–organic framework (MOF). Starting from copper‐based precursor layers (copper oxide and hydroxide), a solid‐vapor conversion with vaporized isonicotinic acid in either a dry or humidified atmosphere, yields a new Cu‐INA MOF polymorph. It is found that the crystalline order of the precursor layer has a strong impact on the texture of Cu‐INA thin films. Furthermore, a novel methodology is introduced to determine the structure of a previously unknown thin‐film phase of Cu‐INA. Although only a few diffraction peaks are found via synchrotron grazing incidence X‐ray diffraction (GIXRD), a triclinic unit cell can be determined, and Patterson functions can be calculated. The latter reveals the position of the copper atoms within the unit cell and the alignment of the INA linkers defining the coordination network structure. This work introduces how the combination of GIXRD data with Patterson functions can be used to identify the structure of an unknown thin‐film MOF polymorph.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.