Abstract

AbstractDensity functional theory (DFT) calculations can be used to help elucidate the structures of active sites on the surface of fuel cell cathode catalysts, which are exceptionally difficult to identify by experimental techniques. The cathode catalysts were modeled in nitrogen‐, boron‐, sulfur‐, and phosphorus‐doped graphene basal planes. Dually‐doped graphene structures combining nitrogen with phosphorus or sulfur are also studied. Potential energy profiles were obtained, and the energies and activation barriers of molecular oxygen binding to the doped graphene model structures were estimated in order to identify potentially active sites for the oxygen reduction reaction in fuel cells. Among the investigated doped graphene structures, the active sites for molecular oxygen chemisorption are identified in graphene doped with either two nitrogen, or two phosphorus, or one sulfur and one phosphorus atoms. Further, the analysis of atomic spin densities and charges in the model structures enables the correlation of the catalytic activity with electron density distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.