Abstract

Patents constitute an up-to-date source of competitive intelligence in technological development; thus, patent analysis has been a vital tool for identifying technological trends. Patent citation analysis is easy to use, but fundamentally has two main limitations: (1) new patents tend to be less cited than old ones and may miss citations to contemporary patents; (2) citation-based analysis cannot be used for patents in databases which do not require citations. Naturally, citation-based analysis tends to underestimate the importance of new patents and may not work in rapidly-evolving industries in which technology life-cycles are shortening and new inventions are increasingly patented world-wide. As a remedy, this paper proposes a patent network based on semantic patent analysis using subject-action-object (SAO) structures. SAO structures represent the explicit relationships among components used in a patent, and are considered to represent key concepts of the patent or the expertise of the inventor. Based on the internal similarities between patents, the patent network provides the up-to-date status of a given technology. Furthermore, this paper suggests new indices to identify the technological importance of patents, the characteristics of patent clusters, and the technological capabilities of competitors. The proposed method is illustrated using patents related to synthesis of carbon nanotubes. We expect that the proposed procedure and analysis will be incorporated into technology planning processes to assist experts such as researchers and R&D policy makers in rapidly-evolving industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.