Abstract
Polycyclic aromatic hydrocarbons (PAHs) are an important class of chemical pollutants that constitute a major component of total hydrocarbons in crude oils. Based on their poor water solubility, toxicity, persistence and potential to bioaccumulate, these compounds are recognized as high-priority pollutants in the environment and are of significant concern for human health. At oil-contaminated sites, PAH-degrading bacteria perform a critical role in the degradation and ultimate removal of these compounds. In April 2010, enormous quantities of PAHs entered the Gulf of Mexico from the thousands of tons of oil that were released from the ill-fated drilling rig Deepwater Horizon. In the ensuing months after the spill, intense research efforts were devoted to characterizing the microorganisms responsible for degrading the oil, particularly in deep waters where a large oil plume, enriched with aliphatic and low molecular-weight aromatic hydrocarbons, was found in the range of 1,000–1,300 m. PAHs, however, were found mainly confined to surface waters. This paper discusses efforts utilizing DNA-based stable isotope probing, cultivation-based techniques and metagenomics to characterize the bacterial guild associated with PAH degradation in oil-contaminated surface waters at Deepwater Horizon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Reviews in Environmental Science and Bio/Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.