Abstract

AbstractCost overruns averaging 45%–50% can occur during the acquisition process of large‐scale complex space programs. The factors that impact the cost overrun are frequently misunderstood and are not identified correctly. This paper investigates the impact of the parameters on the overall cost of a geosynchronous communication satellite program using model‐based global sensitivity analysis. A simulation model with the acquisition data was used to identify the key parameters within the system model that interact with the cost of the program. A system simulation model containing a physics‐based satellite model and a parametric cost model is utilized to conduct variance‐based sensitivity analysis. Data from selected acquisition reports are used to validate the system simulation model. Sobol' analysis is performed on the parameters associated with requirements of the satellite system, operations, and support to maintain the system, including the launch system and ground equipment. The results show that parameters related to the system‐based requirements significantly impact the program cost. These critical parameters, which influence the cost, lay the foundation to quantify the impact of system parameters and their uncertainty on the cost of the system using a simulation‐based model which will aid in the reduction of cost overruns during the design and development of future large‐scale complex engineered systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.