Abstract

Background Neurotransmitter transporters of the SLC1 and SCL6 family are found on presynaptic neurons and on glia cells. The function of these transporters is the termination of neurotransmission by the rapid removal of the neurotransmitter molecules from the synaptic cleft. These transporters couple substrate transport to ion gradients of sodium and chloride. Almost all of the eucaryotic transporters have been described to function as oligomers. However, the forces stabilizing the oligomeric state are not well understood. No crystal structures of eukaryotic transporters are available, but recently crystal structures of bacterial homologs thereof have been solved: GltPh (SLC 1 family) was found as a trimer, LeuT (SLC6 family) was crystallized as a dimer. These homologous crystal structures allow rationalizing on the driving forces that stabilize the eukaryotic counterparts.

Highlights

  • Identifying forces that stabilize the oligomeric state of bacterial homologs of neurotransmitter transporters

  • Neurotransmitter transporters of the SLC1 and SCL6 family are found on presynaptic neurons and on glia cells

  • While the hydrophobic mismatch is a prominent contributor to the stability of the GltPh transporter, it plays a minor role for LeuT, where helix packing and aromatic interactions seem to dominate

Read more

Summary

Open Access

Kumaresan Jayaraman, Azmat Sohail, Michael Freissmuth, Harald H Sitte*, Thomas Stockner From 18th Scientific Symposium of the Austrian Pharmacological Society (APHAR). Joint meeting with the Croatian, Serbian and Slovenian Pharmacological Societies. Graz, Austria. 20-21 September 2012

Background
Conclusions
Methods

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.