Abstract

Distribution of relaxation time (DRT) is used to interpret electrochemical impedance spectroscopy (EIS) for proton exchange membrane (PEM) water electrolyzers, with an attempt to separate overlapped relaxation processes in Nyquist plots. By varying operating conditions and catalyst loadings, four main relaxation peaks arising from EIS can be identified and successfully separated from low to high frequencies as (P1) mass transport, (P2) oxygen evolution reaction kinetics, (P3) reaction kinetics (with faster time constant than P2), and (P4) ionic transport. The shape, height, and frequency of the DRT peaks change with different membrane electrode assembly (MEA) configurations. Electron microscopy reveals distinct features from the cross-sectioned MEAs which verify critical DRT results in that increasing the iridium (Ir)-anode loading from 0.2 mgIr/cm2 to 1.5 mgIr/cm2 reduces kinetic losses due to higher site-access; a thick and compacted anode, however, also triggers higher ohmic resistances from membrane/catalyst layer hydration and increases transport losses due to longer ionomer pathways. DRT provides higher resolution to EIS for deconvoluting processes with different relaxation times and the quantification of DRT peaks improves the accounting of total losses from each process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.