Abstract
Although G-protein-coupled (metabotropic) receptors are known to modulate the production of motor patterns, evidence from the escape swim central pattern generator (CPG) of the nudibranch mollusk, Tritonia diomedea, suggests that they might also participate in the generation of the motor pattern itself. The dorsal swim interneurons (DSIs), identified serotonergic neurons intrinsic to the Tritonia swim CPG, evoke dual component synaptic potentials onto other CPG neurons and premotor interneurons. Both the fast and slow components were previously shown to be due to serotonin (5-HT) acting at distinct postsynaptic receptors. We find that blocking or facilitating metabotropic receptors in a postsynaptic premotor interneuron differentially affects the fast and slow synaptic responses to DSI stimulation. Blocking G-protein activation by iontophoretically injecting the GDP-analogue guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S) did not significantly affect the DSI-evoked fast excitatory postsynaptic potential (EPSP) but decreased the amplitude of the slow component more than 50%. Injection of the GTP analogues guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) and 5'-guanylyl-imidodiphosphate, to prolong G-protein activation, had mixed effects on the fast component but increased the amplitude and duration of the slow component of the DSI-evoked response and, with repeated DSI stimulation, led to a persistent depolarization. These results indicate that the fast component of the biphasic synaptic potential evoked by a serotonergic CPG neuron onto premotor interneurons is mediated by ionotropic receptors (5-HT-gated ion channels), whereas the slow component is mediated by G-protein-coupled receptors. A similar synaptic activation of metabotropic receptors might also be found within the CPG itself, where it could exert a direct influence onto motor pattern generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.