Abstract
In the actual planting of wheat, there are often shortages of seedlings and broken seedlings on long ridges in the field, thus affecting grain yield and indirectly causing economic losses. Variety identification of wheat seedlings using physical methods timeliness and is unsuitable for universal dissemination. Recognition of wheat seedling varieties using deep learning models has high timeliness and accuracy, but fewer researchers exist. Therefore, in this paper, a lightweight wheat seedling variety recognition model, MssiapNet, is proposed. The model is based on the MobileVit-XS and increases the model's sensitivity to subtle differences between different varieties by introducing the scSE attention mechanism in the MV2 module, so the recognition accuracy is improved. In addition, this paper proposes the IAP module to fuse the identified feature information. Subsequently, training was performed on a self-constructed real dataset, which included 29,020 photographs of wheat seedlings of 29 varieties. The recognition accuracy of this model is 96.85%, which is higher than the other nine mainstream classification models. Although it is only 0.06 higher than the Resnet34 model, the number of parameters is only 1/3 of that. The number of parameters required for MssiapNet is 29.70MB, and the single image Execution time and the single image Delay time are 0.16s and 0.05s. The MssiapNet was visualized, and the heat map showed that the model was superior for wheat seedling variety identification compared with MobileVit-XS. The proposed model has a good recognition effect on wheat seedling varieties and uses a few parameters with fast inference speed, which makes it easy to be subsequently deployed on mobile terminals for practical performance testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.