Abstract

Invasive exotic plants (IEP) pose a significant threat to many ecosystems. To effectively manage IEP, it is important to efficiently detect their presences and determine their distribution patterns. Remote sensing has been a useful tool to map IEP but its application is limited in urban forests, which are often the sources and sinks for IEP. In this study, we examined the feasibility and tradeoffs of species level IEP mapping using multiple remote sensing techniques in a highly complex urban forest setting. Bush honeysuckle (Lonicera maackii), a pervasive IEP in eastern North America, was used as our modeling species. Both medium spatial resolution (MSR) and high spatial resolution (HSR) imagery were employed in bush honeysuckle mapping. The importance of spatial scale was also examined using an up-scaling simulation from the HSR object based classification. Analysis using both MSR and HSR imagery provided viable results for IEP distribution mapping in urban forests. Overall mapping accuracy ranged from 89.8% to 94.9% for HSR techniques and from 74.6% to 79.7% for MSR techniques. As anticipated, classification accuracy reduces as pixel size increases. HSR based techniques produced the most desirable results, therefore is preferred for precise management of IEP in heterogeneous environment. However, the use of MSR techniques should not be ruled out given their wide availability and moderate accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.