Abstract

The seed is the most important plant reproductive unit responsible for the evolutionary success of flowering plants. Aside from its essential function in the sexual reproduction of plants, the seed also represents the most economically important agricultural product worldwide, providing energy, nutrients, and raw materials for human nutrition, livestock feed, and countless manufactured goods. Hence, improvements in seed quality or size are highly valuable, due to their economic potential in agriculture. Recently, the importance of indolic compounds in regulating these traits has been reported for Arabidopsis thaliana. The transcriptional and physiological mechanisms involved, however, remain largely undisclosed. Potassium transporters have been suggested as possible mediators of embryo cell size, controlling turgor pressure during seed maturation. In addition, it has been demonstrated that the expression of K+ transporters is effectively regulated by auxin. Here, we provide evidence for the identification of two Arabidopsis K+ transporters, HAK/KT12 (At1g60160) and KUP4 (At4g23640), that are likely to be implicated in determining seed size during seed maturation and, at the same time, show a differential regulation by indole-3-acetic acid and indole-3-acetamide.

Highlights

  • Seed size is an essential indicator of plant fitness and a major determinant for agricultural yield

  • I2n.t1..J.IMn oSl.ilSiccio. 2-A01n8,a1ly9,sxis of K+ Transporters Putatively Involved in Seed Maturation

  • From the initial set of 29 potassium transporters/channels, 12 candidates that are likely the 29 genes as potential targets possibly involved in increasing seed size and seed quality

Read more

Summary

Introduction

Seed size is an essential indicator of plant fitness and a major determinant for agricultural yield. Seed maturation begins with a transition phase from maternal to filial control [7], followed by a period of embryo growth and filling that is characterized by vast cell growth and expansion, the formation of storage organelles, and the loss of central vacuoles. This latter phase is important to ensure proper plant development, but its optimization represents a crucial target to improve the quality and yield of seed crops

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.