Abstract
Ferulic acid (FA), a member of the hydroxycinnamate family, is an abundant dietary antioxidant that may offer beneficial effects against cancer, cardiovascular disease, diabetes, osteoarthritis and Alzheimer's disease. In this study, evidence for sulfation and glucuronidation of FA was investigated upon incubation with human liver microsomes and cytosol. Two main glucuronides, M1 (ether O-glucuronide) and M2 (ester acylglucuronide), were formed with a similar affinity (apparent K(m) 3.53 and 5.15 mM, respectively). A phenol sulfoconjugate was also formed with a higher affinity (K(m) 0.53 mM). Identification of the UDP-glucuronosyltransferase (UGT) isoforms involved in FA glucuronidation was investigated with 12 human recombinant enzymes. FA was mainly glucuronidated by UGT1A isoforms and by UGT2B7. UGT1A4, 2B4, 2B15 and 2B17 failed to glucuronidate the substance. Examination of the kinetic constants revealed that FA was mainly glucuronidated by UGT1A1 at the two nucleophilic groups. UGT1A3 was able to glucuronidate these two positions with the same, but low, efficiency. UGT1A6 and 1A8 were involved in the formation of the ether glucuronide only, whereas UGT1A7, 1A10 and 2B7 preferentially glucuronidated the carboxyl group. Moreover, octyl gallate, a marker substrate of UGT1A1, competitively inhibited FA glucuronidation mediated by this isoform. Altogether, the results suggest that FA glucuronidation is primarily mediated by UGT1A1.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.