Abstract

Understanding radiative exchange in a porous medium is a crucial step that can provide significant insights and improvements in its characteristics, enhancing its practical utility across various industrial applications. In this paper, a numerical model, utilizing the finite element method (FEM), was developed to predict the radiative transfer between a diffusely/specularly reflecting cylindrical packed bed porous medium and a plane heating surface. Four different structures of the medium were suggested to examine the effect of the particles ‘disposition on the radiative properties of the medium. The assessment of normalized flux distribution enables the computation of effective radiative properties including reflectivity, transmissivity, and absorptivity for particles exhibiting diffuse and specular reflection. The results underscore the significant influence of particle arrangement on media properties. The structure of the second model allowed for the attainment of an opaque surface from the first layer. Meaningful correlations can be established from the presented curves, offering a streamlined and accurate method for determining effective radiative property coefficients based on emissivity in future model applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.