Abstract

Abstract Identification of taxa can significantly be assisted by statistical classification based on trait measurements either individually or by phylogenetic (clustering) methods. In this article, we present a general Bayesian approach for classifying species individually based on measurements of a mixture of continuous and ordinal traits, and any type of covariates. The trait vector is derived from a latent variable with a multivariate Gaussian distribution. Decision rules based on supervised learning are presented that estimate model parameters through blocked Gibbs sampling. These decision regions allow for uncertainty (partial rejection), so that not necessarily one specific category (taxon) is output when new subjects are classified, but rather a set of categories including the most probable taxa. This type of discriminant analysis employs reward functions with a set-valued input argument, so that an optimal Bayes classifier can be defined. We also present a way of safeguarding against outlying new observations, using an analogue of a p-value within our Bayesian setting. We refer to our Bayesian set-valued classifier as the Karlsson–Hössjer method, and it is illustrated on an original ornithological data set of birds. We also incorporate model selection through cross-validation, exemplified on another original data set of birds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.