Abstract
Background and Aim:Streptomyces is a well-known agent of secondary metabolite production. This study aimed to identify Streptomyces spp. from garbage dump soils in Surabaya based on the 16S rRNA gene sequence. Moreover, the structure of new chemical compounds used for treating infectious diseases in humans, animals, and plants was elucidated.Materials and Methods:We isolated Streptomyces spp. from garbage dump soils in Surabaya. In this study, all isolates were characterized according to phenotype, and they were also confirmed by 16S rRNA gene sequence analysis using real-time polymerase chain reaction. Multiple sequence alignment and molecular phylogeny analyses were conducted using the MEGA 5.0 software, and then the TREE VIEW program was used to display the phylogenetic tree. The level of DNA similarity was also evaluated using the basic local alignment search tool (BLAST) program and then compared with nucleotide sequences stored in the GenBank database using National Center for Biotechnology Information BLAST.Results:The eight Streptomyces spp. showed different nucleotide sequence lengths in gel electrophoresis and photography, which is in accordance with the results observed in the phylogenetic tree. New types of Streptomyces spp., Sp-C, Sp-D, Sp-Ep, Sp-G, and Sp-I, were found from the waste heap in Surabaya. Of these, Sp-Ep was very closely related to Streptomyces indonesiasis and Streptomyces nashvillensis. Sp-F was identified as Streptomyces levis strain NRRL B-24299, and Sp-C was identified as Synodontis filamentosus. Sp-D was related to Sida javensis and Staphylococcus roseus. Sp-G was related to Streptomyces roseoviridis strain NBRC 12911 and Streptomyces thermocarboxydovorans strain AT52. Sp-I was related to Streptomyces cangkringensis and Streptomyces asiaticus. Finally, Sp-A was related to Sansevieria laurentii strain LMG 19959.Conclusion:Based on the phylogenetic tree, new strains of Streptomyces isolate, namely, Sp-D, Sp-Ep, Sp-G, and Sp-I, were found in the garbage dump soils of Surabaya. This new strain can produce antibiotics to be used as an alternative to antibiotics; however, further research is needed to confirm the activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.