Abstract

Cholangiocarcinoma (CCA) is an aggressive solid tumour with a 5-year survival rate ranging from 7% to 20%. It is, therefore, urgent to identify novel biomarkers and therapeutic targets to improve the outcomes of patients with CCA. SPRY-domain containing protein 4 (SPRYD4) contains SPRY domains that modulate protein–protein interaction in various biological processes; however, its role in cancer development is insufficiently explored. This study is the first to identify that SPRYD4 is downregulated in CCA tissues using multiple public datasets and a CCA cohort. Furthermore, the low expression of SPRYD4 was significantly associated with unfavourable clinicopathological characteristics and poor prognosis in patients with CCA, indicating that SPRYD4 could be a prognosis indicator of CCA. In vitro experiments revealed that SPRYD4 overexpression inhibited CCA cells proliferation and migration, whereas the proliferative and migratory capacity of CCA cells was enhanced after SPRYD4 deletion. Moreover, flow cytometry showed that SPRYD4 overexpression triggered the S/G2 cell phase arrest and promoted apoptosis in CCA cells. Furthermore, the tumour-inhibitory effect of SPRYD4 was validated in vivo using xenograft mouse models. SPRYD4 also showed a close association with tumour-infiltrating lymphocytes and important immune checkpoints including PD1, PD-L1 and CTLA4 in CCA. In conclusion, this study elucidated the role of SPRYD4 during CCA development and highlighted SPRYD4 as a novel biomarker and tumour suppressor in CCA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.